
2/3/13	

1	

Analyzing	 Qualita1ve	 Data	

Informa1cs	 162W	
February	 4,	 2013	

Bonus	 Point	 Opportunity	
•  AGend	 a	 talk	 by	 Maria	 Klawe	
•  Submit	 a	 short	 document	 (less	 than	 one	 page)	 rela1ng	
her	 talk	 to	 our	 work	 in	 this	 class	
–  “Gender	 and	 Technology”	 Bren	 Hall	 6011	 5	 to	 6PM	 Feb	 7	
–  “Blazing	 a	 Trail:	 What	 I	 learned	 from	 25	 years	 of	 being	 the	
first	 female	 in	 my	 job”	 Bren	 Hall	 6011	 2	 to	 3:30	 PM	 Feb	 7	

•  TurnItIn.com	
–  Class	 ID:	 6080138	
–  Enrollment	 password:	 orgs123	

•  Due	 by	 Feb	 10	 (next	 Sunday)	

2/3/13	

2	

Agenda	

•  Feedback	 on	 your	 wri1ng	
•  Bonus	 Point	 Opportunity	
•  General	 informa1on	 on	 qualita1ve	 analysis	
•  Thinking	 Topics	 (Lofland	 et	 al)	
•  Grounded	 Theory	 (Glaser	 and	 Strauss…	 and	
later	 Corbin)	

Wri1ng	

•  Most	 of	 you	 did	 preGy	 well	 for	 your	 first	 aGempt	
•  Some	 of	 you	 were	 disasters	
–  Please	 show	 up	 to	 discussion	 and	 take	 notes	 on	 what	
is	 expected	 so	 that	 you	 can	 follow	 the	 format	

– Work	 out	 with	 your	 group	 when	 to	 do	 cri1ques	 and	
early	 drads	 but	 DO	 THEM	 BEFORE	 THEY	 ARE	 DUE	 IN	
DISCUSSION	

–  Your	 revisions	 will	 be	 graded	 at	 the	 end,	 not	 your	
early	 drads,	 but	 s1ll,	 try	 to	 do	 a	 decent	 job	 on	 early	
drads	 J	

2/3/13	

3	

An	 example	 of	 a	 par1cularly	 good	
assignment	

Reminder	 of	 Wri1ng	 Process	

1)	 First	 drad	 delivered	 to	 group	 leader	 in	 1me	 to	 be	
prepared	 for	 cri1que	
2)	 Bring	 first	 drad	 and	 cri1ques	 to	 class	
3)	 Group	 leader	 delivers	 all	 drads	 to	 Steve	 at	 discussion,	
and	 each	 member	 saves	 cri1ques	 received	 to	 include	 in	
poriolio.	 This	 is	 a	 comple1on	 grade,	 but	 Steve	 and	 I	 will	
be	 looking	 to	 make	 sure	 people	 are	 basically	
understanding.	
4)	 At	 the	 end,	 you	 turn	 in	 a	 poriolio	 made	 up	 of,	 for	 each	
project:	 Drad;	 cri1ques	 recieved;	 Final	 paper;	 reflec1on	
on	 cri1que/revision	 process	 (~250	 words	 for	 this).	 	

2/3/13	

4	

Objec1ve	 of	 Analysis	

•  You	 have	 (or	 will	 have)	 lots	 of	 data	
•  Analysis	 turns	 raw	 data	 into	 findings	

•  Basic	 Process:	
– Organize	 your	 fieldnotes	 into	 readable	 narra1ve	
descrip1ons	

–  Iden1fy	 the	 major	 themes/categories	

Quan1ta1ve	 and	 Qualita1ve	
(yes…	 again…)	

Four	 possibili1es	
•  Qualita1ve	 Analysis	 of	 Qualita1ve	 Data	
•  Qualita1ve	 Analysis	 of	 Quan1ta1ve	 Data	
•  Quan1ta1ve	 Analysis	 of	 Qualita1ve	 Data	
•  Quan1ta1ve	 Analysis	 of	 Quan1ta1ve	 Data	

2/3/13	

5	

Reminder:	 You	 are	 the	 instrument	

•  Bias	 is	 a	 risk	
•  As	 in	 data	 collec1on	
– Triangula1on	
– Alternate	 explana1ons	
– Embrace	 data	 that	 doesn’t	 fit	 in	

Overview	 of	 the	 general	 process	 of	
analysis	

•  Analysis	 begins	 before	 data	 collec1on	

•  Analysis	 cycles	 with	 data	 collec1on	

•  Full	 and	 final	 analysis	 ader	 data	 collec1on	

2/3/13	

6	

Three	 common	 elements	

•  Data	 reduc1on	 (throughout)	
–  The	 process	 of	 selec1on,	 focusing,	 simplifying,	
abstrac1ng	 the	 raw	 data	

•  Data	 organiza1on	 (grows	 as	 study	 occurs)	
– Organizing	 the	 reduced	 data	 in	 ways	 that	 allow	 you	 to	
begin	 to	 generate	 explana1ons	

•  Data	 explana1on	 and	 verifica1on	 (intense	 at	 end)	
– Drawing	 conclusions	 from	 the	 explana1ons	
–  Tes1ng	 the	 conclusions	 drawn:	 verifying	 their	
plausibility	

Induc1ve/Deduc1ve	

•  Induc1ve	 Analysis	
– Let	 the	 analy1c	 themes	 emerge	 from	 the	 study	 of	
the	 data	

•  Deduc1ve	 Analysis	
– Star1ng	 with	 a	 hypothesis	 for	 data	 analysis	

•  Might	 do	 both	 in	 one	 study...	 why?	

2/3/13	

7	

Thinking	 Topics	

One	 Approach	 to	 Data	 Analysis	

Introduc1on	 to	 Thinking	 Topics	

•  Three	 Ac1vi1es	 make	 up	 Analysis	
–  Begins	 with	 thinking	 topics,	 hence	 we’ll	 call	 their	
analysis	 that	

•  Social	 Science	 Framing	
– Asking	 ques1ons	 about	 the	 data	

•  Normalizing	 and	 Managing	 Anxiety	
–  Situa1ng	 data	 into	 the	 “big	 picture”	 and	 not	
panicking!	

•  Coding	
– Marking	 the	 data	

2/3/13	

8	

Normalizing	

•  Simply	 put,	 it	 means	 to	 step	 back	 and	 ask	 why	
you’ve	 been	 studying	 this	

•  In	 other	 words,	 you’re	 normalizing	 against	 the	
problem	 statement	

•  Why	 normalize?	

Possible	 Sources	 for	 Normalizing	

•  It	 depends	 on	 the	 ques1on	 and	 origins	 of	 your	 problem	
– What	 ques1ons	 need	 to	 be	 answered,	 what	 type	 of	
answers	 cons1tute	 a	 result?	 	

•  Sources	 come	 from	 anything	 that	 reminds	 you	 why	
you’re	 doing	 this	 and	 what	 type	 of	 outcome	 you	 want	

•  Possible	 Sources:	
–  The	 notes	 you	 took	 when	 where	 you	 were	 first	 assigned	
the	 project	

–  The	 notes	 you	 took	 about	 the	 literature	 you	 read	

2/3/13	

9	

Managing	 Anxiety	

•  You	 have	 lots	 of	 data!	
– By	 now,	 you	 have	 been	 doing	 lots	 of	 reading	
– You	 have	 started	 to	 collect	 observa1onal	 data	

•  It	 can	 seem	 daun1ng!	

Social	 Science	 Framing	 	
(You	 can	 just	 say	 framing)	

•  Lofland	 et	 al	 describe	 analysis	 to	 be:	
– Empirically	 compelling	
–  Illumina1ng	
–  Important	

2/3/13	

10	

Framing	 involves	 asking	 8	 basic	
ques1ons	

1:	 Type	

•  What	 is	 this	 set	 of	 things	 I	 see	 before	 me?	
•  What	 is	 this	 an	 instance	 of?	 	 What	 type	 of	
experience?	

2/3/13	

11	

2:	 Frequency	

•  How	 oden	 do	 we	 see	 something	 in	 the	 data	
set?	

•  Descrip1ve	 sta1s1cs!	
•  Useful	 for	 characterizing	 how	 many	 people	
experienced	 something	

3:	 Magnitudes	

•  What	 was	 the	 size,	 intensity	 or	 strength	 of	
that?	

•  Did	 anyone	 tell	 you	 about	 something	 that	
might	 have	 endangered	 a	 pa1ent’s	 life?	

2/3/13	

12	

4:	 Structure	

•  Arrangement	 of	 social	 groups	
•  Both	 formal	 and	 informal	 must	 be	 considered	

5:	 Processes	

•  How	 does	 something	 happen?	
(What	 are	 the	 steps,	 stages,	 that	 occur	 for	 an	
instance	 to	 occur)	

•  For	 example,	 how	 do	 people	 seek	 help?	

2/3/13	

13	

6:	 Causes	

•  What	 circumstances	 must	 occur	 for	 event	 to	
happen?	
– Lofland	 et	 al	 say	 cause,	 but	 this	 NOT	 cause	 like	
cause	 and	 effect	

– More	 like…	 antecedents,	 context,	 or	 seqng	
events	

7:	 Consequences	

•  What	 happened	 next,	 as	 a	 result	
•  Looking	 for	 consequences	 gives	 your	 results	 a	
temporal	 feel	

2/3/13	

14	

8:	 Agency	

•  Ascribing	 an	 actor	 to	 an	 ac1on	
(Who	 did	 what?)	

•  Can	 be	 your	 informant,	 their	 colleagues,	
managers	 and	 so	 on	 or	 “hidden	 others”	

Coding	

•  You’ve	 got	 ques1ons	 to	 ask	 of	 the	 data	
(framing)	

•  Coding	 tells	 you	 how	 to	 mark	 them	
•  Marking	 up	 the	 data	 and	 making	 memos	

2/3/13	

15	

Marking	 the	 Data	

•  Literally	 involves	 going	 through	 all	 the	 data	
and	 asking	 ques1ons	

•  When	 connec1ons	 happen	 you	 go	 to	 the	
second	 part...	

Memoing	

•  When	 you	 find	 links	 among	 data	 write	 them	
down	 as	 a	 memo	

•  A	 memo	 is	 a	 series	 of	 notes	 that	 just	 explain	
what	 seems	 to	 be	 linked	 and	 why	

2/3/13	

16	

Timeline	 of	 Analysis	

•  Before	 analysis,	 data	 include	 individual	 notes	
•  Analysis	 takes	 this	 order	 and	 changes	 it	 to	
another	 one	 (topical)	

•  Post-‐analysis:	 the	 report	
•  Use	 the	 report,	 what	 needs	 to	 be	 answered	
and	 for	 whom	 as	 another	 mechanism	 to	 help	
you	 transform	 the	 interviews	 into	 an	 analyzed	
collec1on	

Moving	 Among	 Ac1vi1es	

•  Normalizing	 helps	 with	 framing	
•  Normalizing	 helps	 with	 coding	
•  Coding	 and	 Framing	
•  Can	 you	 see	 connec1ons?	
•  Framing	 allows	 you	 to	 code,	 it	 helps	 provide	
the	 codes	

•  At	 the	 same	 1me,	 coding	 helps	 with	 framing	

Normalizing

Framing Coding

2/3/13	

17	

Overview	 of	 Grounded	 Theory	

•  What	 is	 it?	
•  How	 do	 I	 do	 it?	
•  Concepts	
– Theore1cal	 Sensi1vity	
– Open	 Coding	
– Axial	 Coding	
– Selec1ve	 Coding	

What	 is	 Grounded	 Theory?	

•  The	 Discovery	 of	 Grounded	 Theory:	 Strategies	
for	 Qualita1ve	 Research	

•  Barney	 G.	 Glaser	 and	 Anselm	 L.	 Strauss	

•  Iden1fy	 categories	 and	 concepts	 that	 emerge	
from	 text	

•  Link	 concepts	 into	 substan1ve	 and	 formal	
theories	

2/3/13	

18	

Mechanics	 of	 GT	

•  Read	 through	 field	 notes	 to	 produce	 analy%c	
categories	

•  As	 categories	 emerge	 pull	 data	 from	
categories	 together	 and	 compare	 them	

•  Think	 about	 how	 categories	 fit	 together	 into	
an	 explana1on,	 or	 model	

•  Take	 models	 developed	 and	 check	 them	
against	 the	 data	

•  Present	 results	 using	 examples	 from	 the	 data	

Geqng	 started	 with	 GT	

•  Theore1cal	 sensi1vity	 is	 about	 developing	
insight	 into	 data	

•  Use	 literature:	 readings	 on	 theory,	 research,	
and	 suppor1ng	 evidence	

•  Use	 professional	 experience	

2/3/13	

19	

Example:	 Chronic	 Cancer	 Care	

•  Literature:	 medical	 AND	 human-‐computer	
interac1on	

•  Professional	 experience:	 get	 others	 insights	
•  Cultural	 experience:	 	 sat	 on	 cancer-‐related	
list-‐serves	

Step	 One:	 Open	 Coding	

•  Process	 of	 breaking	 down,	 examining,	
comparing,	 conceptualizing	 and	 categorizing	
data	

•  Labeling	 phenomena	
•  Discovering	 categories	
•  Developing	 categories:	 proper1es	 and	
dimensions	

2/3/13	

20	

Open	 Coding:	 Labeling	 Phenomena	

•  Break	 down	 raw	 full	 descrip1ve	 field	 notes	
•  By	 asking	 ques1ons	 about	 notes	
•  For	 each	 phenomenon	 (incident,	 idea	 or	
event)	

•  Give	 each	 discrete	 phenomenon	 a	 name	
•  Compare	 it	 to	 others	 already	 discovered	

Open	 Coding:	 Discovering	 Categories	

•  Next,	 group	 concepts	 into	 categories	
•  Now	 you’re	 asking	 ques1ons	 about	 the	
concepts	 and	 the	 category	
– What	 are	 the	 phenomena	 in	 this	 category	 about?	
– What	 are	 they	 instances	 of?	
– Use	 answer	 to	 label	 category	

2/3/13	

21	

Open	 Coding:	 Proper1es	 and	
Dimensions	

•  Proper1es:	 characteris1cs	 or	 aGributes	 of	 a	
category	

•  Dimensions:	 	 loca1ons	 of	 a	 property	 along	 a	
con1nuum	

Example
Open Coding

• Context

• Interview with a software developer
about her work

Well I try to avoid parallel development, I grumble about it, to me it's out there, it
happens in our company and in others, but it seems to me that if there's better
management and better decomposition of problems then should be avoided. Number
1 solve it by keeping things separate as far the units of work, the resolutions of work,
which in our case is source files, and number 2 when you go about assigning this work
you could try and assign common problems to the same person so they are not doing
parallel development. ... What has to happen is the last guy who checks something in
has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at
the top of the file and somebody else is working on something and the bottom of the
file then it's fairly easy to merge unless those changes change the overall algorithm,
then it gets messy.

Example courtesy of Beki Grinter at Georgia Tech

2/3/13	

22	

Example: Open Coding
Phenomena

• Phenomena: events being described

• Parallel development

• Merge

Well I try to avoid parallel development, I grumble about it, to me it's out there, it happens in
our company and in others, but it seems to me that if there's better management and better
decomposition of problems then should be avoided. Number 1 solve it by keeping things separate as
far the units of work, the resolutions of work, which in our case is source files, and number 2 when
you go about assigning this work you could try and assign common problems to the same person so
they are not doing parallel development. ... What has to happen is the last guy who checks
something in has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at the top of the
file and somebody else is working on something and the bottom of the file then it's fairly easy to
merge unless those changes change the overall algorithm, then it gets messy.

Example: Open Coding
Category Discovery and Development

• Category: initially, code coordination, but too broad
so Individuals coordinating code

• Properties and Dimensions

• Work: that varies from independent to dependent

• Module Change: varies from separate to the same

Well I try to avoid parallel development, I grumble about it, to me it's out there, it happens in
our company and in others, but it seems to me that if there's better management and better
decomposition of problems then should be avoided. Number 1 solve it by keeping things separate as
far the units of work, the resolutions of work, which in our case is source files, and number 2 when
you go about assigning this work you could try and assign common problems to the same person so
they are not doing parallel development. ... What has to happen is the last guy who checks
something in has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at the top of the
file and somebody else is working on something and the bottom of the file then it's fairly easy to
merge unless those changes change the overall algorithm, then it gets messy.

2/3/13	

23	

Step Two: Axial Coding

Taking categories and identifying

• The conditions that give rise to it

• Context into which it is embedded

• Action/interaction strategies in which it is
handled, managed, carried out

• Consequences of those strategies

Axial Coding
Casual Conditions and Context

• Causal Conditions are events, incidents that
lead to the occurrence of a category

• Context is the set of properties that
pertain to a category

2/3/13	

24	

Axial Coding
Intervening Conditions and (Inter)Actional Strategies

• Intervening Conditions are broader
structural context pertaining to category

• Action/Interactional Strategies

• What actions do individuals take with
respect to the category?

• How do groups or collectives interact
and act with respect to the category?

Axial Coding
Consequences

• Consequences

• There are always consequences :-)

• Here it means the outcomes of the
(inter)actional strategies

2/3/13	

25	

Example: Axial Coding
Causal Conditions

• Individuals coordinating code

• What causes individuals coordinating code?

Well I try to avoid parallel development, I grumble about it, to me it's out there, it
happens in our company and in others, but it seems to me that if there's better
management and better decomposition of problems then should be avoided. Number
1 solve it by keeping things separate as far the units of work, the resolutions of work,
which in our case is source files, and number 2 when you go about assigning this work
you could try and assign common problems to the same person so they are not doing
parallel development. ... What has to happen is the last guy who checks something in
has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at
the top of the file and somebody else is working on something and the bottom of the
file then it's fairly easy to merge unless those changes change the overall algorithm,
then it gets messy.

Example: Axial Coding
Context

• Individuals coordinating code

• Work: that varies from independent to
dependent

• Module Change: varies from separate to
the same

Well I try to avoid parallel development, I grumble about it, to me it's out there, it
happens in our company and in others, but it seems to me that if there's better
management and better decomposition of problems then should be avoided. Number 1
solve it by keeping things separate as far the units of work, the resolutions of work, which
in our case is source files, and number 2 when you go about assigning this work you could
try and assign common problems to the same person so they are not doing parallel
development. ... What has to happen is the last guy who checks something in has to
merge these two together, and merging to be honest is generally pretty easy, as long as the
people aren't working on the same checks in the code. If I'm working at the top of the file
and somebody else is working on something and the bottom of the file then it's fairly easy
to merge unless those changes change the overall algorithm, then it gets messy.

2/3/13	

26	

Example: Axial Coding
Intervening Conditions

• Individuals coordinating code

• What broader contexts might apply here?

Well I try to avoid parallel development, I grumble about it, to me it's out there, it happens in our
company and in others, but it seems to me that if there's better management and better
decomposition of problems then should be avoided. Number 1 solve it by keeping things separate as
far the units of work, the resolutions of work, which in our case is source files, and number 2 when
you go about assigning this work you could try and assign common problems to the same person so
they are not doing parallel development. ... What has to happen is the last guy who checks
something in has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at the top of the
file and somebody else is working on something and the bottom of the file then it's fairly easy to
merge unless those changes change the overall algorithm, then it gets messy.

Example: Axial Coding
(Inter)actional Strategies

• Individuals coordinating code

• Strategies focus on avoiding interaction

Well I try to avoid parallel development, I grumble about it, to me it's out there, it happens in our
company and in others, but it seems to me that if there's better management and better
decomposition of problems then should be avoided. Number 1 solve it by keeping things separate as
far the units of work, the resolutions of work, which in our case is source files, and number 2 when
you go about assigning this work you could try and assign common problems to the same person so
they are not doing parallel development. ... What has to happen is the last guy who checks
something in has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at the top of the
file and somebody else is working on something and the bottom of the file then it's fairly easy to
merge unless those changes change the overall algorithm, then it gets messy.

2/3/13	

27	

Example: Axial Coding
Consequences

• Individuals coordinating code

• Not keeping things separate -- leads to
what consequence?

Well I try to avoid parallel development, I grumble about it, to me it's out there, it happens in our
company and in others, but it seems to me that if there's better management and better
decomposition of problems then should be avoided. Number 1 solve it by keeping things separate as
far the units of work, the resolutions of work, which in our case is source files, and number 2 when
you go about assigning this work you could try and assign common problems to the same person so
they are not doing parallel development. ... What has to happen is the last guy who checks
something in has to merge these two together, and merging to be honest is generally pretty easy, as
long as the people aren't working on the same checks in the code. If I'm working at the top of the
file and somebody else is working on something and the bottom of the file then it's fairly easy to
merge unless those changes change the overall algorithm, then it gets messy.

Step Three: Selective Coding

• The process of selecting the core category

• Then relating it to other categories

• Three processes

• Explicating the story line

• Relating other categories to the core

• Validating the story line

2/3/13	

28	

What’s this story line thing all about?

• Commit, commit commit!

• Finding the story

• Ask yourself what seems the most
striking/interesting

• Does one category seem more central?

Selective Coding
Relating Categories to the Story Line

• First, outline core’s properties and
dimensions

• Relate other categories to the core

2/3/13	

29	

Selective Coding
Validating the Story Line

• Final step is validation

• Write a series of memos that step through
the story

• If you must.... go back to the field

A	 Caveat	 about	 Analysis	

•  Analysis	 is	 hard	
•  So,	 what	 you’re	 going	 to	 do	 is	 try	
– By	 trying	 you’ll	 develop	 lots	 of	 ques1ons	 that	 you	
want	 answered	

– And	 that’s	 a	 sign	 to	 me	 that	 you’re	 learning	

•  So,	 lets	 get	 started...	

2/3/13	

30	

Summary	

•  Thinking	 Topics	 and	 Grounded	 Theory	 are	 just	
two	 of	 many	 analysis	 approaches	

•  Analysis	 includes	 three	 main	 components:	
– Normalizing	
– Framing	
– Coding	

•  Thinking	 topics	 includes	 8	 key	 ques1ons	
•  Grounded	 theory	 includes	 3	 steps	

